

 Memory corruption vulnerability exposure
can be mitigated through memory hardening
practices

 OS vendors have a unique opportunity to
fight memory corruption vulnerabilities
through hardening the memory manager

 Microsoft is raising the technology bar to
combat external threats

 Microsoft is raising the technology bar to
combat external threats

 New features you’ve probably heard about
 Privilege Separation
 IE Protected Mode
 Kernel Patch Protection
 Code Integrity

 New features we are covering today
 Address Space Layout Randomization
 Windows Vista Dynamic Memory Allocator

Red Hat Enterprise Linux
 Images

▪ Section reordering
▪ DLL randomization
▪ EXE randomization*

 Stack
▪ Protected control flow data*
▪ Local variable protection*
▪ Segment randomization
▪ Non-executable

 Heap
▪ Segment randomization
▪ Non-executable

OpenBSD
 Images

▪ DLL randomization
▪ Section reordering

 Stack
▪ Protected control flow data*
▪ Local variable protection
▪ Segment randomization
▪ Non-executable

 Heap
▪ Non-executable
▪ Segment randomization

Apple OS X
 Images

▪ No protection
 Stack

▪ No protection
 Heap

▪ No protection

Windows Vista
 Images

▪ EXE randomization
▪ DLL randomization

 Stack
▪ Protected exception handlers
▪ Protected control flow data
▪ Local variable protection
▪ Segment randomization
▪ Non-executable

 Heap
▪ Protected heap management data
▪ Segment randomization
▪ Non-executable

A quick look at what you’ve already
been exposed to:
 Stack Cookies (/GS)
 Heap Mitigations (XP SP2)
 Structured Exception Handling

(SafeSEH)
 Unhandled Exception Filter (MS06-051)
 Hardware DEP/NX

 New in Windows Vista
 Address Space Layout Randomization

▪ The History of ASLR
▪ Architectural Considerations
▪ Vista ASLR Technical Details
▪ Testing Methodology

 Dynamic Memory Allocator
▪ A Short Lesson in Heap Exploitation
▪ Improvements in Vista Heap Management
▪ Vista Dynamic Memory Allocator Internals
▪ Testing Methodology

Windows Vista ASLR is a technology
that makes exploitation of a
vulnerability a statistical problem

Address Space Layout
Randomization allows for the
relocation of memory mappings,
making the a process’ address space
layout unpredictable

 ASLR Theory
 Exploitation relies on prior knowledge of

the memory layout of the targeted process

 Published Research
 PaX Documentation

▪ PaX Team (http://pax.grsecurity.net/docs/aslr.txt)

 “On the Effectiveness of Address Space
Layout Randomization”
▪ Shacham, et al Stanford University

 Windows Vista Process Model
 Most applications are threaded

 Windows Vista Memory Management
 File mappings must align at 64k boundaries
 Shared mappings must be used to keep

memory overhead low and preserve physical
pages

 Fragmentation of the address space must be
avoided to allow for large allocations

 Supports hardware NX

 Image Mapping Randomization
 Random base address chosen for each

image loaded once per boot
 8 bits of entropy
 Fix-ups applied on page-in
 Images are mapped at the same

location across processes
 99.6% Effective

Heap Randomization
 Random offset chosen for segment

allocation using 64k alignment (5-bit
entropy)

Stack Randomization
 Random offset chosen for segment

allocation using 64k or 256k alignment.
 Random offset within first half of the

first page

Three pieces to the strategy
 Address Space Randomization
 Non-Executable Pages
 Service Restart Policy

Assumptions
 ASLR will only protect against remote

exploitation
 ASLR requires NX to remain effective
 ASLR requires a limit on the number of

exploitation attempts to remain effective

 Prior to Windows Vista, NX could be
disabled in a process if PERMANENT
flag was not set
 Loading a DLL that is not NX compatible

▪ No relocation information
▪ Loaded off removable media
▪ Open handle to a data mapping of the file

 Call NtSetInformationProcess with the
MEM_EXECUTE_OPTION_ENABLE flag

 In Windows Vista, NX cannot be
disabled once turned on for a
process

Most processes enable NX by default

Reducing the brute force space
 Code symmetry

▪ Each location shifts stack pointer 20 bytes

 Advanced return address location
▪ Emulation - EEREAP

kernel32+0xa1234: kernel32+0xb1234: user32+0x01234: advapi32+0x51234:
retn 16 pop ebx jz 0x12345678 lea esp, [esp+20]

pop ebp sub esp, 16 pop eax
retn 8 xor eax, eax call eax

ret

Partial overwrites
 Given known addresses at known

offsets, partial overwrites yield
predictable results without full
knowledge of the address space layout

 With randomization in play, only
bounded overflows can be used reliably
for a single partial overwrite

Partial overwrites
 A single partial overwrite can be used to

execute a payload or gain additional
partial overwrites

D:\>partial
banner1: 0040100a banner2: 0040100f
hello world!

D:\>partial own
banner1: 0040100a banner2: 0040100f
owned!

Partial overwrites
 A single partial overwrite can be used to

execute a payload or gain additional
partial overwrites

int main(int argc, char **argv)
{

struct Object obj1;
char buf[32];
struct Object obj2;

…
printf("banner1: %08x banner2: %08x\n", banner1, banner2);
if(argv[1] != 0)

strncpy(buf, overflow, sizeof(overflow));
obj1.func();

return 0;
}
partial!main+0x5a:
004011ea 6a30 push 30h
004011ec 68b8114200 push offset partial!overflow
004011f1 8d4dc4 lea ecx,[ebp-3Ch]
004011f4 51 push ecx
004011f5 e816060000 call partial!strncpy (00401810)
004011fa 83c40c add esp,0Ch

Partial overwrites
 A single partial overwrite can be used to

execute a payload or gain additional
partial overwrites0:000> bp 004011f5

0:000> g
banner1: 0040100a banner2: 0040100f
Breakpoint 0 hit
partial!main+0x65:
004011f5 e816060000 call partial!strncpy (00401810)
0:000> dt obj1
Local var @ 0x12ff38 Type Object
 +0x000 next : (null)
 +0x004 val : 17895697
 +0x008 func : 0x0040100a partial!ILT+5(_banner1)+0
0:000> p
partial!main+0x6a:
004011fa 83c40c add esp,0Ch
0:000> dt obj1
Local var @ 0x12ff38 Type Object
 +0x000 next : 0x41414141 Object
 +0x004 val : 1094795585
 +0x008 func : 0x0040100f partial!ILT+10(_banner2)+0
0:000> g
owned!

 Information Leaking
 Uninitialized memory
 Use multiple attempts to gain address layout

information that will get you code execution
 Additional image map locations can usually be inferred

from one DLL address
 Heap spraying reduces the need for accuracy
 Non-randomized data as arguments to functions

 SharedUserData / ReadOnlySharedMemoryBase
 Non-relocatable resource dlls

 3rd party binaries

Software Development Process
 Create NX and ASLR compatible binaries
 Keep service restart policies in mind
 Ensure information leak bugs are

addressed

Technology
 Use hardware that supports NX

The majority of currently exploited
vulnerabilities in Microsoft products
are overflows into heap memory

Heap exploitation relies on
corrupting heap management data
or attacking application data within
the heap

Class objects contain a list of
function pointers for each virtual
function in the class called a
vtable

class MyClass
{
public:
 MyClass();
 virtual ~MyClass();
 virtual MemberFunction();
 int MemberVariable;
};

Overwriting virtual function
pointers is the simplest method of
heap exploitation

VTable Overwrites

HEAP_ENTRY Overflow
 Scenario: Heap-based buffer overflow

allows for writing into adjacent free
heap block

 Attack: Overwrite FLINK and BLINK
values and wait for HeapAlloc()

 Allows one or two 4-byte writes to
controlled locations

mov dword ptr [ecx],eax
mov dword ptr [eax+4],ecx

EAX = Flink, EBX = Blink

FREE HEAP BLOCK

_HEAP_ENTRY
 +0x000 Size
 +0x002 PreviousSize
 +0x004 SmallTagIndex
 +0x005 Flags
 +0x006 UnusedBytes
 +0x007 SegmentIndex
_LIST_ENTRY
 +0x000 Flink
 +0x004 Blink

HEAP_ENTRY Overflow Mitigations in
XP SP2

 List integrity checked during heap allocation

 8-bit Cookie
 Verified on allocation after

removal from free list

LIST_ENTRY->Flink->Blink == LIST_ENTRY->Blink->Flink == LIST_ENTRY

HEAP_ENTRY Overflow Mitigations in
XP SP2

 Defeated by attacking the lookaside list
 First heap overwrite takes control of Flink value in a

free chunk with a lookaside list entry
 Allocation of the corrupted chunk puts the corrupt

Flink value into the lookaside list
 Next HeapAlloc() of the same sized chunk will

return the corrupted pointer

Heap segment randomization
HEAP_ENTRY integrity checks
Block entry randomization
Linked-list validation and

substitution
Function pointer hardening
Terminate on Error

HEAP_ENTRY
 Checksum for Size and Flags
 Size, Flags, Checksum, and PreviousSize

are XOR’d against random value

Adds extra resilience against
overflows into Flink and Blink values

Linked-lists
 Forward and backward pointer validation

on unlink from any list

Lookaside lists
 Replaced by Low-Fragmentation Heap

Function pointer hardening
 CommitRoutine and InterceptRoutine

function pointers encoded
 CRT atexit() destructors encoded

Terminate on Error
 Opt-in API that cannot be disabled
 Ensures program cleanup does not

utilize tainted heap structures

The Low-Fragmentation Heap is
enabled by default in Windows Vista

The LFH replaces lookaside lists and
is similar in nature
 128 buckets of static sized buffers
 Utilized for reoccuring allocations of the

same size

 HEAP_ENTRY
 Doubly-linked list pointers are only validated when

unlinking a node

InsertHeadList(ListHead, Entry)
 Flink = ListHead->Flink;
 Entry->Flink = Flink;
 Entry->Blink = ListHead;
 Flink->Blink = Entry;
 ListHead->Flink = Entry;

InsertTailList(ListHead, Entry)
 Blink = ListHead->Blink;
 Entry->Flink = ListHead;
 Entry->Blink = Blink;
 Blink->Flink = Entry;
 ListHead->Blink = Entry;

 Attack
 If list head pointers can be corrupted prior to

an insert, the destination of a 4-byte write
can be controlled

 The address of the free chunk being inserted
into the list will be written to the corrupted
linked list pointer

 Assessment
 Writing the address of the chunk may be only

be helpful in limited circumstances
 It is difficult to find a list head to overwrite

 HEAP_UCR_DESCRIPTOR

 Attack
 Repeated large allocations will result in

the allocation of a new segment
 HEAP_UCR_DESCRIPTOR is at a static

offset from first allocation in a segment
 If fake descriptor points at allocated

memory, the next heap allocation will
write a HEAP_UCR_DESCRIPTOR to a
controlled address

 Assessment
 Limited control of the data written

should effectively reduce this to a
partial DWORD overwrite

 Increased complexity with multi-stage
attack requires a high degree of control
such as active scripting

Unused

Allocated Heap

UCR Descriptor

 HEAP_UCR_DESCRIPTOR

 Attack
 Repeated large allocations will result in

the allocation of a new segment
 HEAP_UCR_DESCRIPTOR is at a static

offset from first allocation in a segment
 If fake descriptor points at allocated

memory, the next heap allocation will
write a HEAP_UCR_DESCRIPTOR to a
controlled address

 Assessment
 Limited control of the data written

should effectively reduce this to a
partial DWORD overwrite

 Increased complexity with multi-stage
attack requires a high degree of control
such as active scripting

Unused

Allocated Heap

UCR Descriptor

Unused

Allocated Heap

 Overflow

UCR Descriptor

Function Ptr
 0x000a1234

 HEAP_UCR_DESCRIPTOR

 Attack
 Repeated large allocations will result in

the allocation of a new segment
 HEAP_UCR_DESCRIPTOR is at a static

offset from first allocation in a segment
 If fake descriptor points at allocated

memory, the next heap allocation will
write a HEAP_UCR_DESCRIPTOR to a
controlled address

 Assessment
 Limited control of the data written

should effectively reduce this to a
partial DWORD overwrite

 Increased complexity with multi-stage
attack requires a high degree of control
such as active scripting

Unused

Allocated Heap

 Overflow

UCR Descriptor

_HEAP_UCR_DESCRIPTOR
 +0x000 ListEntry
 +0x008 SegmentEntry
 +0x010 Address
 +0x014 Size

Address points to the
next reserved region
and defines where a
HEAP_UCR_DESCRIPTOR will
be written on the next
segment allocation

Function Ptr
 0x000a1234

 Ptr
XXXX

 _LFH_BLOCK_ZONE

 Attack
 New SubSegments are created at the

location specified by the FreePointer in
the LFH_BLOCK_ZONE structure

 Control of the FreePointer allows writing
a HEAP_SUBSEGMENT to an arbitrary
location

 Allocation size and number of
allocations affect fields in the
HEAP_SUBSEGMENT structure

 Assessment
 Limited control of the data written

should effectively reduce this to a
partial DWORD overwrite

 Increased complexity attack requires a
high degree of control such as active
scripting

_LFH_BLOCK_ZONE
 +0x000 ListEntry
 +0x008 FreePointer
 +0x00c Limit

_HEAP_SUBSEGMENT
 +0x000 LocalInfo
 +0x004 UserBlocks
 +0x008 AggregateExchg
 +0x010 BlockSize
 +0x012 Flags
 +0x014 BlockCount
 +0x016 SizeIndex
 +0x017 AffinityIndex
 +0x010 Alignment
 +0x018 SFreeListEntry
 +0x01c Lock

Default exploit mitigations
on popular client
operating systems

 OS vendors have a unique opportunity to fight
memory corruption vulnerabilities through
hardening the memory manager

 Microsoft is committed to closing the gap as much
as possible and Windows Vista will have the
strongest pro-active vulnerability defense of any
Windows release

 These protections will continue to evolve to
prevent wide-spread exploitation of software
vulnerabilities

 Exploitation mitigations do not solve the problem
of software vulnerabilities, but do provide a stop-
gap during times of exposure

 Thank you for attending

 Please contact us at
switech@microsoft.com for feedback on
Microsoft’s mitigation technologies

mailto:switech@microsoft.com

	Slide 1
	Introduction
	Slide 3
	Comparing Exploitation Countermeasures
	Slide 5
	Slide 6
	Windows Exploitation Countermeasures
	Windows Vista Exploitation Countermeasures
	Address Space Layout Randomization
	The History of ASLR
	Architectural Considerations
	Vista ASLR Technical Details
	Slide 13
	Slide 14
	Testing Methodology
	Bypassing NX
	Slide 17
	Bruteforcing ASLR
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Residual Weaknesses
	Putting ASLR to Work for You
	Windows Vista Heap Allocator
	A Short Lesson in Heap Exploitation
	Slide 27
	Slide 28
	Slide 29
	Windows Vista Heap Hardening
	Slide 31
	Slide 32
	Slide 33
	Windows Vista Low-Fragmentation Heap
	Slide 35
	Windows Vista Heap Testing Methodology
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Conclusion
	Questions?

