


 Memory corruption vulnerability exposure 
can be mitigated through memory hardening 
practices

 OS vendors have a unique opportunity to 
fight memory corruption vulnerabilities 
through hardening the memory manager

 Microsoft is raising the technology bar to 
combat external threats



 Microsoft is raising the technology bar to 
combat external threats

 New features you’ve probably heard about
 Privilege Separation
 IE Protected Mode
 Kernel Patch Protection
 Code Integrity

 New features we are covering today
 Address Space Layout Randomization
 Windows Vista Dynamic Memory Allocator



Red Hat Enterprise Linux
 Images 

▪ Section reordering
▪ DLL randomization
▪ EXE randomization*

 Stack
▪ Protected control flow data*
▪ Local variable protection*
▪ Segment randomization
▪ Non-executable

 Heap
▪ Segment randomization
▪ Non-executable



OpenBSD
 Images

▪ DLL randomization
▪ Section reordering

 Stack
▪ Protected control flow data*
▪ Local variable protection
▪ Segment randomization
▪ Non-executable

 Heap
▪ Non-executable
▪ Segment randomization

Apple OS X
 Images

▪ No protection
 Stack

▪ No protection
 Heap

▪ No protection



Windows Vista
 Images 

▪ EXE randomization
▪ DLL randomization

 Stack
▪ Protected exception handlers
▪ Protected control flow data
▪ Local variable protection
▪ Segment randomization
▪ Non-executable

 Heap
▪ Protected heap management data
▪ Segment randomization
▪ Non-executable



A quick look at what you’ve already 
been exposed to:
 Stack Cookies (/GS)
 Heap Mitigations (XP SP2)
 Structured Exception Handling 

(SafeSEH) 
 Unhandled Exception Filter (MS06-051)
 Hardware DEP/NX



 New in Windows Vista
 Address Space Layout Randomization

▪ The History of ASLR
▪ Architectural Considerations
▪ Vista ASLR Technical Details
▪ Testing Methodology

 Dynamic Memory Allocator
▪ A Short Lesson in Heap Exploitation
▪ Improvements in Vista Heap Management
▪ Vista Dynamic Memory Allocator Internals
▪ Testing Methodology



Windows Vista ASLR is a technology 
that makes exploitation of a 
vulnerability a statistical problem

Address Space Layout 
Randomization allows for the 
relocation of memory mappings, 
making the a process’ address space 
layout unpredictable



 ASLR Theory
 Exploitation relies on prior knowledge of 

the memory layout of the targeted process 

 Published Research
 PaX Documentation

▪ PaX Team (http://pax.grsecurity.net/docs/aslr.txt)

 “On the Effectiveness of Address Space 
Layout Randomization” 
▪ Shacham, et al Stanford University



 Windows Vista Process Model
 Most applications are threaded

 Windows Vista Memory Management
 File mappings must align at 64k boundaries
 Shared mappings must be used to keep 

memory overhead low and preserve physical 
pages 

 Fragmentation of the address space must be 
avoided to allow for large allocations

 Supports hardware NX



 Image Mapping Randomization
 Random base address chosen for each 

image loaded once per boot
 8 bits of entropy 
 Fix-ups applied on page-in
 Images are mapped at the same 

location across processes
 99.6% Effective



Heap Randomization
 Random offset chosen for segment 

allocation using 64k alignment (5-bit 
entropy)

Stack Randomization
 Random offset chosen for segment 

allocation using 64k or 256k alignment. 
 Random offset within first half of the 

first page



Three pieces to the strategy
 Address Space Randomization
 Non-Executable Pages
 Service Restart Policy



Assumptions
 ASLR will only protect against remote 

exploitation
 ASLR requires NX to remain effective
 ASLR requires a limit on the number of 

exploitation attempts to remain effective



 Prior to Windows Vista, NX could be 
disabled in a process if PERMANENT 
flag was not set
 Loading a DLL that is not NX compatible

▪ No relocation information
▪ Loaded off removable media
▪ Open handle to a data mapping of the file

 Call NtSetInformationProcess with the 
MEM_EXECUTE_OPTION_ENABLE flag



 In Windows Vista, NX cannot be 
disabled once turned on for a 
process 

Most processes enable NX by default



Reducing the brute force space
 Code symmetry

▪ Each location shifts stack pointer 20 bytes

 Advanced return address location
▪ Emulation - EEREAP

kernel32+0xa1234: kernel32+0xb1234: user32+0x01234: advapi32+0x51234:
retn 16 pop ebx jz 0x12345678 lea esp, [esp+20]

pop ebp sub esp, 16 pop eax
retn 8 xor eax, eax call eax

ret



Partial overwrites
 Given known addresses at known 

offsets, partial overwrites yield 
predictable results without full 
knowledge of the address space layout

 With randomization in play, only 
bounded overflows can be used reliably 
for a single partial overwrite



Partial overwrites
 A single partial overwrite can be used to 

execute a payload or gain additional 
partial overwrites

D:\>partial
banner1: 0040100a banner2: 0040100f
hello world!

D:\>partial own
banner1: 0040100a banner2: 0040100f
owned!



Partial overwrites
 A single partial overwrite can be used to 

execute a payload or gain additional 
partial overwrites

int main(int argc, char **argv)
{

struct Object obj1;
char buf[32];
struct Object obj2;

…
printf("banner1: %08x banner2: %08x\n", banner1, banner2);
if(argv[1] != 0)

strncpy(buf, overflow, sizeof(overflow));
obj1.func();

return 0;
}
partial!main+0x5a:
004011ea 6a30            push    30h
004011ec 68b8114200      push    offset partial!overflow 
004011f1 8d4dc4          lea     ecx,[ebp-3Ch]
004011f4 51              push    ecx
004011f5 e816060000      call    partial!strncpy (00401810)
004011fa 83c40c          add     esp,0Ch



Partial overwrites
 A single partial overwrite can be used to 

execute a payload or gain additional 
partial overwrites0:000> bp 004011f5

0:000> g
banner1: 0040100a banner2: 0040100f
Breakpoint 0 hit
partial!main+0x65:
004011f5 e816060000      call    partial!strncpy (00401810)
0:000> dt obj1
Local var @ 0x12ff38 Type Object
   +0x000 next             : (null)
   +0x004 val              : 17895697
   +0x008 func             : 0x0040100a     partial!ILT+5(_banner1)+0
0:000> p
partial!main+0x6a:
004011fa 83c40c          add     esp,0Ch
0:000> dt obj1
Local var @ 0x12ff38 Type Object
   +0x000 next             : 0x41414141 Object
   +0x004 val              : 1094795585
   +0x008 func             : 0x0040100f     partial!ILT+10(_banner2)+0
0:000> g
owned!



 Information Leaking
 Uninitialized memory
 Use multiple attempts to gain address layout 

information that will get you code execution
 Additional image map locations can usually be inferred 

from one DLL address 
 Heap spraying reduces the need for accuracy
 Non-randomized data as arguments to functions 

 SharedUserData / ReadOnlySharedMemoryBase
 Non-relocatable resource dlls

 3rd party binaries



Software Development Process
 Create NX and ASLR compatible binaries
 Keep service restart policies in mind
 Ensure information leak bugs are 

addressed

Technology
 Use hardware that supports NX



The majority of currently exploited 
vulnerabilities in Microsoft products 
are overflows into heap memory

Heap exploitation relies on 
corrupting heap management data 
or attacking application data within 
the heap



Class objects contain a list of 
function pointers for each virtual 
function in the class called a 
vtable

class MyClass
{
public:
  MyClass();
  virtual ~MyClass();
  virtual MemberFunction();
  int MemberVariable;
};

Overwriting virtual function 
pointers is the simplest method of 
heap exploitation

VTable Overwrites



HEAP_ENTRY Overflow
 Scenario: Heap-based buffer overflow 

allows for writing into adjacent free 
heap block

 Attack: Overwrite FLINK and BLINK 
values and wait for HeapAlloc()

 Allows one or two 4-byte writes to 
controlled locations

mov dword ptr [ecx],eax
mov dword ptr [eax+4],ecx 

EAX = Flink, EBX = Blink

FREE HEAP BLOCK

_HEAP_ENTRY
 +0x000 Size
 +0x002 PreviousSize 
 +0x004 SmallTagIndex
 +0x005 Flags        
 +0x006 UnusedBytes 
 +0x007 SegmentIndex
_LIST_ENTRY
 +0x000 Flink    
 +0x004 Blink 



HEAP_ENTRY Overflow Mitigations in 
XP SP2

 List integrity checked during heap allocation

 8-bit Cookie
 Verified on allocation after 

removal from free list

LIST_ENTRY->Flink->Blink == LIST_ENTRY->Blink->Flink == LIST_ENTRY



HEAP_ENTRY Overflow Mitigations in 
XP SP2

 Defeated by attacking the lookaside list
 First heap overwrite takes control of Flink value in a 

free chunk with a lookaside list entry
 Allocation of the corrupted chunk puts the corrupt 

Flink value into the lookaside list
 Next HeapAlloc() of the same sized chunk will 

return the corrupted pointer



Heap segment randomization
HEAP_ENTRY integrity checks
Block entry randomization
Linked-list validation and 

substitution
Function pointer hardening
Terminate on Error



HEAP_ENTRY 
 Checksum for Size and Flags
 Size, Flags, Checksum, and PreviousSize 

are XOR’d against random value

Adds extra resilience against 
overflows into Flink and Blink values



Linked-lists
 Forward and backward pointer validation 

on unlink from any list

Lookaside lists 
 Replaced by Low-Fragmentation Heap



Function pointer hardening
 CommitRoutine and InterceptRoutine 

function pointers encoded
 CRT atexit() destructors encoded

Terminate on Error
 Opt-in API that cannot be disabled
 Ensures program cleanup does not 

utilize tainted heap structures



The Low-Fragmentation Heap is 
enabled by default in Windows Vista

The LFH replaces lookaside lists and 
is similar in nature
 128 buckets of static sized buffers
 Utilized for reoccuring allocations of the 

same size





 HEAP_ENTRY
 Doubly-linked list pointers are only validated when 

unlinking a node

InsertHeadList(ListHead, Entry)
 Flink = ListHead->Flink;
 Entry->Flink = Flink;
 Entry->Blink = ListHead;
 Flink->Blink = Entry;
 ListHead->Flink = Entry;

InsertTailList(ListHead, Entry)
 Blink = ListHead->Blink;
 Entry->Flink = ListHead;
 Entry->Blink = Blink;
 Blink->Flink = Entry;
 ListHead->Blink = Entry;

 Attack
 If list head pointers can be corrupted prior to 

an insert, the destination of a 4-byte write 
can be controlled

 The address of the free chunk being inserted 
into the list will be written to the corrupted 
linked list pointer

 Assessment
 Writing the address of the chunk may be only 

be helpful in limited circumstances
 It is difficult to find a list head to overwrite



 HEAP_UCR_DESCRIPTOR

 Attack
 Repeated large allocations will result in 

the allocation of a new segment
 HEAP_UCR_DESCRIPTOR is at a static 

offset from first allocation in a segment
 If fake descriptor points at allocated 

memory, the next heap allocation will 
write a HEAP_UCR_DESCRIPTOR to a 
controlled address

 Assessment
 Limited control of the data written 

should effectively reduce this to a 
partial DWORD overwrite

 Increased complexity with multi-stage 
attack requires a high degree of control 
such as active scripting 

Unused

Allocated Heap

UCR Descriptor



 HEAP_UCR_DESCRIPTOR

 Attack
 Repeated large allocations will result in 

the allocation of a new segment
 HEAP_UCR_DESCRIPTOR is at a static 

offset from first allocation in a segment
 If fake descriptor points at allocated 

memory, the next heap allocation will 
write a HEAP_UCR_DESCRIPTOR to a 
controlled address

 Assessment
 Limited control of the data written 

should effectively reduce this to a 
partial DWORD overwrite

 Increased complexity with multi-stage 
attack requires a high degree of control 
such as active scripting 

Unused

Allocated Heap

UCR Descriptor

Unused

Allocated Heap

 Overflow

UCR Descriptor

Function Ptr
  0x000a1234



 HEAP_UCR_DESCRIPTOR

 Attack
 Repeated large allocations will result in 

the allocation of a new segment
 HEAP_UCR_DESCRIPTOR is at a static 

offset from first allocation in a segment
 If fake descriptor points at allocated 

memory, the next heap allocation will 
write a HEAP_UCR_DESCRIPTOR to a 
controlled address

 Assessment
 Limited control of the data written 

should effectively reduce this to a 
partial DWORD overwrite

 Increased complexity with multi-stage 
attack requires a high degree of control 
such as active scripting 

Unused

Allocated Heap

 Overflow

UCR Descriptor

_HEAP_UCR_DESCRIPTOR
   +0x000 ListEntry 
   +0x008 SegmentEntry
   +0x010 Address 
   +0x014 Size

Address points to the 
next reserved region 
and defines where a 
HEAP_UCR_DESCRIPTOR will
be written on the next
segment allocation

Function Ptr
  0x000a1234

 Ptr
XXXX



 _LFH_BLOCK_ZONE

 Attack
 New SubSegments are created at the 

location specified by the FreePointer in 
the LFH_BLOCK_ZONE structure

 Control of the FreePointer allows writing 
a HEAP_SUBSEGMENT to an arbitrary 
location

 Allocation size and number of 
allocations affect fields in the 
HEAP_SUBSEGMENT structure

 Assessment
 Limited control of the data written 

should effectively reduce this to a 
partial DWORD overwrite

 Increased complexity attack requires a 
high degree of control such as active 
scripting 

_LFH_BLOCK_ZONE
 +0x000 ListEntry
 +0x008 FreePointer
 +0x00c Limit

_HEAP_SUBSEGMENT
 +0x000 LocalInfo 
 +0x004 UserBlocks 
 +0x008 AggregateExchg 
 +0x010 BlockSize  
 +0x012 Flags       
 +0x014 BlockCount   
 +0x016 SizeIndex   
 +0x017 AffinityIndex  
 +0x010 Alignment  
 +0x018 SFreeListEntry 
 +0x01c Lock  



Default exploit mitigations
on popular client
operating systems



 OS vendors have a unique opportunity to fight 
memory corruption vulnerabilities through 
hardening the memory manager

 Microsoft is committed to closing the gap as much 
as possible and Windows Vista will have the 
strongest pro-active vulnerability defense of any 
Windows release

 These protections will continue to evolve to 
prevent wide-spread exploitation of software 
vulnerabilities

 Exploitation mitigations do not solve the problem 
of software vulnerabilities, but do provide a stop-
gap during times of exposure



 Thank you for attending

 Please contact us at 
switech@microsoft.com for feedback on 
Microsoft’s mitigation technologies

mailto:switech@microsoft.com
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